

Question number	Answer	Notes	Marks
$2 \text { (a) } 1$ ii iii	0.45; Power $=$ current \times voltage; Substitution; Evaluation; e.g. $1.5=1 \times 0.45$ $\mathrm{I}=3.3$ (A) (answer to at least 2 s.f.)	no unit penalty Allow $P=I \times V$ and rearrangements Allow reverse argument yielding 1.35 (W) for 1mark	1 1 2
(b) i ii	```conversion of time to seconds; substitution into correct equation (}\textrm{E}=\textrm{I}\times\textrm{V}\times\textrm{t}\mathrm{); evaluation; e.g. time = 7 ×5 <60 < 60 (=126 000) E=3.3\times9\times7\times5\times60\times60 3742000(J)``` A description to include electrical; to light (and heat);	Allow solution in stages i.e. from $P=1 V$ and $P=E / t$ Allow for full marks 3402000 (J) (from use of 3 A given above) $3780000(\mathrm{~J})($ from $1.5 \times 20 \times 7 \times 5 \times 60 \times 60)$ Allow max of 1 if time not in seconds, e.g. 1040 (J) (from $3.3 \times 9 \times 7 \times 5$, time in hours) 62400 (J) (from $3.3 \times 9 \times 7 \times 5 \times 60$, time in minutes) Reject "electricity" for the first mark Allow chemical to electrical to light for 1 mark only	3 2
		Total	9

Question number	Answer	Notes	Marks
3 (a)	A (chemical \rightarrow electrical \rightarrow kinetic)		1
(b) (i)	$\mathrm{KE}=1 / 2 \times \mathrm{m} \times \mathrm{v}^{2}$;		1
(ii)	substitution into correct equation; Calculation; $\begin{aligned} & \text { e.g. } 1 / 2 \times 600 \times 28^{2} \text {; } \\ & 240000(\mathrm{~J}) ; \end{aligned}$	correct answer = 2 marks ACCEPT 235200 (J);	2
(c) (i)	gpe $=$ mass $\times \mathrm{g} \times$ height;	ACCEPT GPE $=\mathrm{mgh}$ ACCEPT gravitational field strength/acceleration due to gravity for g	1
(ii)	substitution into correct equation; Calculation; $\begin{aligned} & \text { e.g. } 600 \times 10 \times 1000 \\ & 6000000(\mathrm{~J}) \text { or } 6000 \mathrm{k}(\mathrm{~J}) \text { or } 6 \mathrm{M}(\mathrm{~J}) \end{aligned}$	correct answer $=2$ marks ALLOW 5880000 (from g = 9.8)	2
(iii)	EITHER Calculation of energy supplied (by fuel cells) $24 \text { kW x } 180 \text { s OR } 4320000 \text { (J); }$ Comparison with energy required $4320000<6000000$ OR Calculation of power required $6000000 \mathrm{~J} \div 180 \mathrm{~s} \text { OR } 33.3 \mathrm{~kW} \text {; }$ Comparision with fuel cells $33.3 \mathrm{~kW}>24 \mathrm{~kW} \text {; }$	ALLOW ECF if 6000000 not seen ALLOW ECF if 6000000 not seen	2

Question number	Answer	Notes	Marks
3 (c) (iv)	use of $\mathrm{P}=\mathrm{I} \times \mathrm{V}$ for one cell ; e.g. 30×0.6 OR 18(W) calculation; e.g $24000 \div 18=1333(>1300)$ OR $1300 \times 18=23400(<24000)$ ALTERNATIVE Using $\mathrm{E}=\mathrm{IVt}$ for one cell; e.g. $30 \times 0.6 \times 180$ OR $3240(\mathrm{~J})$ calculation; e.g. $4320000 \div 3240=1333(>1300)$ OR $1300 \times 3240=4212000(<4320000)$	First Marking Point can be credited if ' 18 ' or '30 $\times 0.6$ ' seen in calculation	2

Question number	Answer	Notes	Marks
4 (a)	any two from: MP1. reverse the magnet (N into coil); MP2. reverse the connections at the ammeter; MP3. move the magnet out of coil; ignore all references to speed of movement numbers of turns on the coil does not conflate MP2 and 3 to negate their answer allow for MP2 invert the coil	(2)	

Total for Question 4 = 16 marks

Question number	Answer	Notes	Marks
5 (a) (i) (ii)	gravitational potential energy $=$ mass $\times \mathrm{g} \times$ height Substitution into correct equation; Calculation; e.g. $\begin{aligned} & \mathrm{GPE}=2.75 \times 10 \times 0.61 \\ & =17(\mathrm{~J}) \end{aligned}$	Allow symbols and rearrangements, e.g. GPE $=m \times g \times h$ 16.8, 16.775, 16.78 (J) allow calculation with $\mathrm{g}=$ 9.81 $=16.46$ (J$)$	1
(iii)	Any two of- MP1. idea that system is inefficient OR not 100\% efficient; MP2. idea that energy is lost / wasted / dissipated ; MP3. explanation / detail of fate of energy; e.g. used when working against \{friction / drag / air resistance\} as thermal energy to parts of the apparatus or surroundings transferred to surroundings by sound converted into KE as mass fell	condone used / transferred elsewhere Need mention of 'object' Ignore light allow to overcome friction allow heat for thermal energy	2
(iv)	Substitution into correct equation; Calculation; e.g. Energy transferred $=0.46 \times 12.7 \times$ 1.3 7.6 (J)	allow answer without working or equation seen (7.5946)	2
(b)	three of the following ideas- MP1. water has (initial) GPE; MP2. KE of (moving) water; MP3. Work done on turbine / generator; MP4. Work done against magnetic force; MP5. Electrical energy/power/current/voltage (produced);	allow KE in turbine / generator	3

Question number			Answer	Notes	Marks
6	(a)		Substitution into correct equation; Calculation; ```e.g. 1.3 x 10.3 x 4.7; 63 (J);```	No credit for merely quoting the equation as $E=I V t$ is given on $p 2$. $62.9 \text { (J) }$	2
	(b)	(i)	Work done $=$ force \times distance moved (in the direction of the force);	Accept rearrangements and symbols $\begin{aligned} & \text { e.g. force }=\frac{\text { work }}{\text { distance }} \\ & W=F \times d \\ & F=W / d \end{aligned}$	1
		(ii)	Substitution into correct equation; Calculation; e.g. Work done $=20 \times 0.85$; 17 (J);		2
		(iii)	Value given in 8(b)(ii);	Allow GP(E)	1
	(c)	(i)	Efficiency = useful energy output divided by total energy input;	Accept efficiency in terms of work or power and percentage e.g. Efficiency $=($ work out $/$ work in) $\times 100$ \%	1
		(ii)	17 divided by 63; 0.27;	Allow ecf answer from b(ii) [or (b)(iii)] divided by answer from (a) Allow 27\%	2

Total 9 marks

